Ok, so you have your computational output of a set of 2D points. You have been lazy and done the obvious stuff: arrange them in columns, with the first one being the x coordinates, second one the y coordinate, then come the fields, which may be scalar (one column each), or vector (two columns each, one for each coordinate). How to visualize them?

With python, start with

`ipython --pylab`

Then, read the data

In [4]: dt = loadtxt( ‘1/mesh.dat’ )

In [5]: shape( dt )

Out[5]: (1024, 27)

Notice the last command tells us we have 1024 data points, and 27 fields (well, 25 + positions). For convinience, assign columns to arrays:

In [6]: x=dt[:,0]; y=dt[:,1]; al=dt[:,4]

Now x and y are positions, and “al” is the scalar field for the fifth column (number 4, since counters start at 0 in python).

To visualize the positions,

In [7]: scatter( x , y )

A scalar field may be visualized with a color map:

In [9]: scatter( x , y , c = al )

The “c=” means the color is taken from field al. One may fiddle with colormaps and symbol sizes:

In [9]: scatter( x , y , c = al , cmap= plt.cm.Blues, s=8 )

To know the range we are plotting, produce a color bar:

In [19]: colorbar()

Remember each plotting is overlaid on the previous one, so it is necessary to blank the plot from time to time:

In [11]: clf()

For vector fields, assign coordinates to two separate arrays:

In [20]: vx=dt[:,8]; vy=dt[:,9]

Then, use “quiver” to get a vector plot:

In [22]: quiver( x, y, vx , vy )